更多>>人气最旺专家

高仁峒

领域:39健康网

介绍:一、质量安全“十严禁”红线(九)严禁现浇梁满堂支架、连续梁挂篮施工不进行专项设计,不按设计要求施工。...

王闪闪

领域:百度知道

介绍:“也许在下一季可能会有一些调整。利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用

利来国际w66备用
本站新公告利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用
p9m | 2018-12-12 | 阅读(180) | 评论(381)
二、突出法治引领,发挥权力机关的推动作用常委会把保证宪法和法律法规的贯彻实施放在人大工作的突出位置,采取有效措施,大力推进法治禹会建设。【阅读全文】
利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用
pbt | 2018-12-12 | 阅读(801) | 评论(501)
我们人类的发展的过程其实也就是学习别人先进技术,经验,理念的过程。【阅读全文】
f8z | 2018-12-12 | 阅读(12) | 评论(611)
二是勿以恶小而为之,培养良好的工作习惯。【阅读全文】
ipl | 2018-12-12 | 阅读(929) | 评论(252)
工程质量监督管理局汇总后报建设部。【阅读全文】
prn | 2018-12-12 | 阅读(774) | 评论(48)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
8yd | 2018-12-11 | 阅读(896) | 评论(528)
过去的一年,在领导和同志们的关怀、帮助下,围绕本职工作,充分发挥岗位职能,认真学习专业知识,提高工作效率,以“服从领导、团结同志、认真学习、扎实工作”为准则,始终坚持高标准、严要求,较好地完成了各项工作任务。【阅读全文】
8bs | 2018-12-11 | 阅读(615) | 评论(92)
“老板永远都是对的”、“复杂的事情简单做,简单的事情认真做,认真的事情重复做,重复的事情创新做”、“对待工作要,认认真真、仔仔细细;战战兢兢、如履薄冰”是我这段时间最切身的感受。【阅读全文】
7fb | 2018-12-11 | 阅读(600) | 评论(949)
“今天的集会非常有意义,让我们坚定了反对建造新的美军基地的信念。【阅读全文】
利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用,利来国际w66备用
rye | 2018-12-11 | 阅读(41) | 评论(73)
DNA查密码子对应的氨基酸,查转移RNA的反密码子,两个氨基酸在核糖体的相应位置发生缩合反应形成二肽核糖体沿着mRNA向前移动,另一个转移RNA将相应的氨基酸转移到密码子的位置,完成翻译工作。【阅读全文】
vcn | 2018-12-10 | 阅读(905) | 评论(603)
记者了解到,19日播出的节目中,“麻将姐妹团”好友赵薇、那英惊喜亮相,“幻乐体验官”王菲将上演收官大秀。【阅读全文】
ypg | 2018-12-10 | 阅读(981) | 评论(357)
经我们宣传,澄清了目的,打消了群众的顾虑。【阅读全文】
ah5 | 2018-12-10 | 阅读(191) | 评论(411)
在重力作用下,这种微构造会在一定程度上控制注入水或地层水的流动。【阅读全文】
rh6 | 2018-12-10 | 阅读(236) | 评论(741)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
hnt | 2018-12-09 | 阅读(972) | 评论(190)
我的心热了起来,不知不觉中,我正做着外公当年做过的事。【阅读全文】
5nj | 2018-12-09 | 阅读(742) | 评论(117)
为了尽快适应新的工作岗位,我自觉加强学习,虚心求教释惑,不断理清工作思路,总结工作方法,现已基本胜任本职。【阅读全文】
共5页

友情链接,当前时间:2018-12-12

利来国际最给利的老牌 利来娱乐老牌 利来国际公司 利来国际旗舰厅app 利来国际AGq旗舰厅
利来国际www.w66com 利来娱乐国际 w66利来国际手机app 利来国际最老牌手机板 利来国际
利来国际是多少 利来国际手机版 w66利来娱乐 利来娱乐w66 利来娱乐网址
利来娱乐账户 利来网页 利来娱乐备用 利来国际w66网页版
广丰县| 富平县| 霞浦县| 都安| 兴文县| 闻喜县| 晋中市| 大英县| 淮安市| 龙门县| 瓦房店市| 吐鲁番市| 恩施市| 宁陵县| 南澳县| 紫云| 邯郸市| 台州市| 茌平县| 荆门市| 盐城市| 常山县| 宁河县| 永州市| 剑河县| 化德县| 军事| 金华市| 宿松县| 涞水县| 宜州市| 周口市| 漾濞| 民县| 兴义市| 开化县| 罗山县| 潜江市| 曲水县| 西和县| 雅安市| http:// http:// http:// http:// http:// http://